60 research outputs found

    Centers, Peripheries, and Popularity: The Emergence of Norms in Simulated Networks of Linguistic Influence

    Get PDF
    We simulate the dynamics of diffusion and establishment of norms, variants adopted by the majority of agents, in a large social influence network with scale-free small-world properties. Diffusion is modeled as the probabilistic uptake of one of several competing variants by agents of unequal social standing. We find that novel variants diffuse following an S-curve and stabilize as norms when three conditions are simultaneously satisfied: the network comprises both extremely highly connected agents (centers) and very isolated members (peripheries), and agents pay proportionally more attention to better connected, more ā€œpopularā€, neighbors. These findings shed light on little known dynamic properties of centers and peripheries in large influence networks. They show that centers, structural equivalents of highly influential leaders in empirical studies of social networks, are propagators of linguistic influence, while certain peripheral individuals, or loners, can act either as repositories of old forms or initiators of new variants depending on the current state of the rest of the population

    A Framework for Modeling Human Behavior in Large-scale Agent-based Epidemic Simulations

    Get PDF
    Acknowledgements We thank Cuebiq; mobility data is provided by Cuebiq, a location intelligence and measurement platform. Through its Data for Good program, Cuebiq provides access to aggregated mobility data for academic research and humanitarian initiatives. This first-party data is collected from anonymized users who have opted-in to provide access to their location data anonymously, through a GDPR and CCPA compliant framework. To further preserve privacy, portions of the data are aggregated to the census-block group level. For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.Peer reviewedPublisher PD

    Simulation-Assisted Optimization for Large-Scale Evacuation Planning with Congestion-Dependent Delays

    Full text link
    Evacuation planning is a crucial part of disaster management. However, joint optimization of its two essential components, routing and scheduling, with objectives such as minimizing average evacuation time or evacuation completion time, is a computationally hard problem. To approach it, we present MIP-LNS, a scalable optimization method that utilizes heuristic search with mathematical optimization and can optimize a variety of objective functions. We also present the method MIP-LNS-SIM, where we combine agent-based simulation with MIP-LNS to estimate delays due to congestion, as well as, find optimized plans considering such delays. We use Harris County in Houston, Texas, as our study area. We show that, within a given time limit, MIP-LNS finds better solutions than existing methods in terms of three different metrics. However, when congestion dependent delay is considered, MIP-LNS-SIM outperforms MIP-LNS in multiple performance metrics. In addition, MIP-LNS-SIM has a significantly lower percent error in estimated evacuation completion time compared to MIP-LNS

    Epidemiological and economic impact of pandemic influenza in Chicago: Priorities for vaccine interventions.

    Get PDF
    The study objective is to estimate the epidemiological and economic impact of vaccine interventions during influenza pandemics in Chicago, and assist in vaccine intervention priorities. Scenarios of delay in vaccine introduction with limited vaccine efficacy and limited supplies are not unlikely in future influenza pandemics, as in the 2009 H1N1 influenza pandemic. We simulated influenza pandemics in Chicago using agent-based transmission dynamic modeling. Population was distributed among high-risk and non-high risk among 0-19, 20-64 and 65+ years subpopulations. Different attack rate scenarios for catastrophic (30.15%), strong (21.96%), and moderate (11.73%) influenza pandemics were compared against vaccine intervention scenarios, at 40% coverage, 40% efficacy, and unit cost of $28.62. Sensitivity analysis for vaccine compliance, vaccine efficacy and vaccine start date was also conducted. Vaccine prioritization criteria include risk of death, total deaths, net benefits, and return on investment. The risk of death is the highest among the high-risk 65+ years subpopulation in the catastrophic influenza pandemic, and highest among the high-risk 0-19 years subpopulation in the strong and moderate influenza pandemics. The proportion of total deaths and net benefits are the highest among the high-risk 20-64 years subpopulation in the catastrophic, strong and moderate influenza pandemics. The return on investment is the highest in the high-risk 0-19 years subpopulation in the catastrophic, strong and moderate influenza pandemics. Based on risk of death and return on investment, high-risk groups of the three age group subpopulations can be prioritized for vaccination, and the vaccine interventions are cost saving for all age and risk groups. The attack rates among the children are higher than among the adults and seniors in the catastrophic, strong, and moderate influenza pandemic scenarios, due to their larger social contact network and homophilous interactions in school. Based on return on investment and higher attack rates among children, we recommend prioritizing children (0-19 years) and seniors (65+ years) after high-risk groups for influenza vaccination during times of limited vaccine supplies. Based on risk of death, we recommend prioritizing seniors (65+ years) after high-risk groups for influenza vaccination during times of limited vaccine supplies

    Using Agent-Based Simulation to Investigate Behavioral Interventions in a Pandemic Simulating Behavioral Interventions in a Pandemic

    Get PDF
    Simulation is a useful tool for evaluating behavioral interventions when the adoption rate among a population is uncertain. Individual agent models are often prohibitively expensive, but, unlike stochastic models, allow studying compliance heterogeneity. In this paper we demonstrate the feasibility of evaluating behavioral intervention policies using large-scale data-driven agent-based simulations. We explain how the simulation is calibrated with respect to real-world data, and demonstrate the utility of our approach by studying the effectiveness of interventions used in Virginia in early 2020 through counterfactual simulations

    Semantic network analysis of vaccine sentiment in online social media.

    Get PDF
    OBJECTIVE: To examine current vaccine sentiment on social media by constructing and analyzing semantic networks of vaccine information from highly shared websites of Twitter users in the United States; and to assist public health communication of vaccines. BACKGROUND: Vaccine hesitancy continues to contribute to suboptimal vaccination coverage in the United States, posing significant risk of disease outbreaks, yet remains poorly understood. METHODS: We constructed semantic networks of vaccine information from internet articles shared by Twitter users in the United States. We analyzed resulting network topology, compared semantic differences, and identified the most salient concepts within networks expressing positive, negative, and neutral vaccine sentiment. RESULTS: The semantic network of positive vaccine sentiment demonstrated greater cohesiveness in discourse compared to the larger, less-connected network of negative vaccine sentiment. The positive sentiment network centered around parents and focused on communicating health risks and benefits, highlighting medical concepts such as measles, autism, HPV vaccine, vaccine-autism link, meningococcal disease, and MMR vaccine. In contrast, the negative network centered around children and focused on organizational bodies such as CDC, vaccine industry, doctors, mainstream media, pharmaceutical companies, and United States. The prevalence of negative vaccine sentiment was demonstrated through diverse messaging, framed around skepticism and distrust of government organizations that communicate scientific evidence supporting positive vaccine benefits. CONCLUSION: Semantic network analysis of vaccine sentiment in online social media can enhance understanding of the scope and variability of current attitudes and beliefs toward vaccines. Our study synthesizes quantitative and qualitative evidence from an interdisciplinary approach to better understand complex drivers of vaccine hesitancy for public health communication, to improve vaccine confidence and vaccination coverage in the United States

    Impact of demographic disparities in social distancing and vaccination on influenza epidemics in urban and rural regions of the United States.

    Get PDF
    BACKGROUND: Self-protective behaviors of social distancing and vaccination uptake vary by demographics and affect the transmission dynamics of influenza in the United States. By incorporating the socio-behavioral differences in social distancing and vaccination uptake into mathematical models of influenza transmission dynamics, we can improve our estimates of epidemic outcomes. In this study we analyze the impact of demographic disparities in social distancing and vaccination on influenza epidemics in urban and rural regions of the United States. METHODS: We conducted a survey of a nationally representative sample of US adults to collect data on their self-protective behaviors, including social distancing and vaccination to protect themselves from influenza infection. We incorporated this data in an agent-based model to simulate the transmission dynamics of influenza in the urban region of Miami Dade county in Florida and the rural region of Montgomery county in Virginia. RESULTS: We compare epidemic scenarios wherein the social distancing and vaccination behaviors are uniform versus non-uniform across different demographic subpopulations. We infer that a uniform compliance of social distancing and vaccination uptake among different demographic subpopulations underestimates the severity of the epidemic in comparison to differentiated compliance among different demographic subpopulations. This result holds for both urban and rural regions. CONCLUSIONS: By taking into account the behavioral differences in social distancing and vaccination uptake among different demographic subpopulations in analysis of influenza epidemics, we provide improved estimates of epidemic outcomes that can assist in improved public health interventions for prevention and control of influenza

    Combining participatory influenza surveillance with modeling and forecasting

    Get PDF
    Background: Influenza outbreaks affect millions of people every year and its surveillance is usually carried out in developed countries through a network of sentinel doctors who report the weekly number of Influenza-like Illness cases observed among the visited patients. Monitoring and forecasting the evolution of these outbreaks supports decision makers in designing effective interventions and allocating resources to mitigate their impact. Objectives: Describe the existing participatory surveillance approaches that have been used for modeling and forecasting of the seasonal influenza epidemic, and how they can help strengthen real-time epidemic science and provide a more rigorous understanding of epidemic conditions. Methods: We describe three different participatory surveillance systems, WISDM (Widely Internet Sourced Distributed Monitoring), InfluenzaNet and Flu Near You (FNY), and show how modeling and simulation can be or has been combined with participatory disease surveillance to: i) measure the non-response bias in a participatory surveillance sample using WISDM; and ii) nowcast and forecast influenza activity in different parts of the world (using InfluenzaNet and Flu Near You). Results: WISDM based results measure the participatory and sample bias for three epidemic metrics i.e. attack rate, peak infection rate, and time-to-peak, and find the participatory bias to be the largest component of the total bias. InfluenzaNet platform shows that digital participatory surveillance data combined with a realistic data-driven epidemiological model can provide both short-term and long-term forecasts of epidemic intensities; and the ground truth data lie within the 95 percent confidence intervals for most weeks. The statistical accuracy of the ensemble forecasts increase as the season progresses. The Flu Near You platform shows that participatory surveillance data provide accurate short-term flu activity forecasts and influenza activity predictions. The correlation of the HealthMap Flu Trends estimates with the observed CDC ILI rates is 0.99 for 2013-2015. Additional data sources lead to an error reduction of about 40% when compared to the estimates of the model that only incorporates CDC historical information. Conclusions: While the advantages of participatory surveillance, compared to traditional surveillance, include its timeliness, lower costs, and broader reach, it is limited by a lack of control over the characteristics of the population sample. Modeling and simulation can help overcome this limitation as well as provide real-time and long term forecasting of Influenza activity in data poor parts of the world
    • ā€¦
    corecore